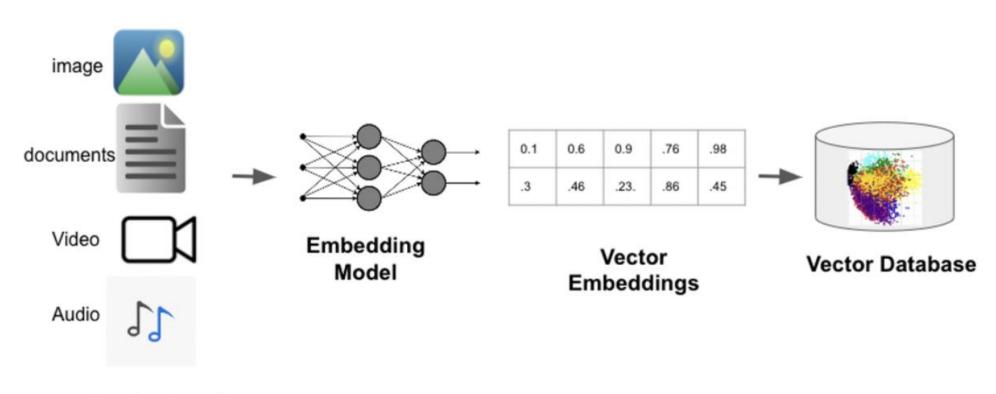
Efficient Vector Search on Disaggregated Memory with d-HNSW

Yi Liu*, **Fei Fang***, Chen Qian *University of California Santa Cruz*

Vector DataBases

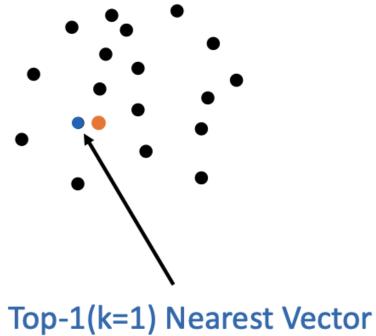


Unstructured/ Structured Data

Vector Query

Given a query vector

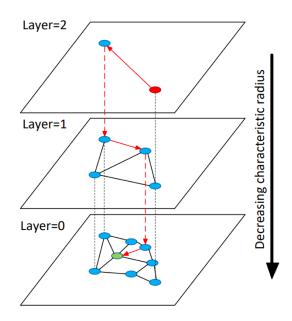
Return Top-k Nearest vectors

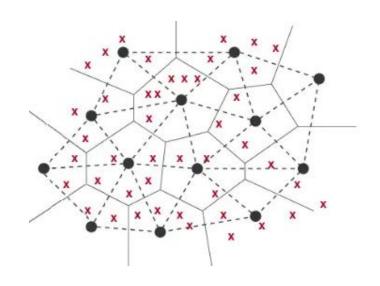


Approximate Vector Query

Graph Index

Inverted Index



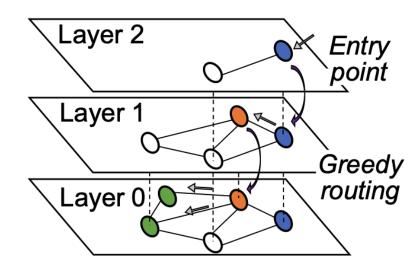


Hierarchical Navigable Small World (HNSW)

similarity search

trade off: latency vs accuracy

Robustness and high performance

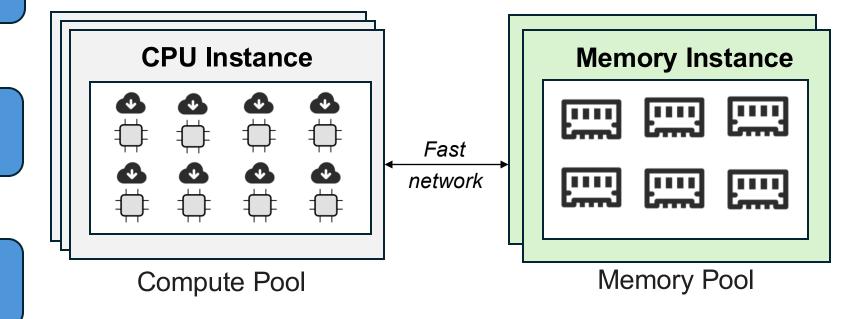


Disaggregated Memory Systems (DMS)

High resource utilization

Flexible hardware scalability

Efficient data sharing



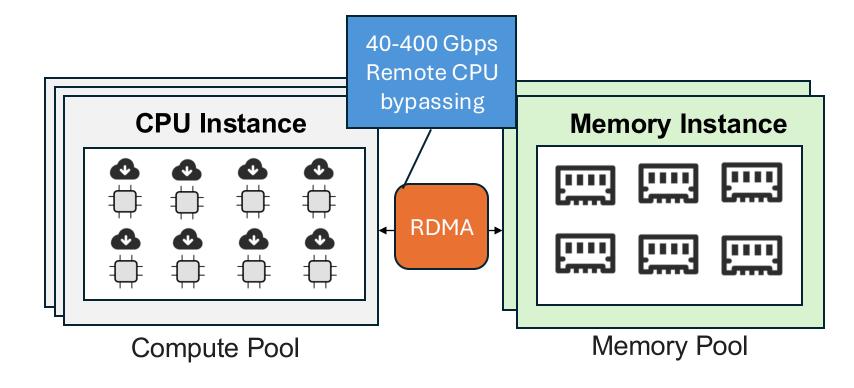
RDMA-based Disaggregated Memory System

file system

key-value stores

transactional databases

• • •



vector databases

Vector Database on Disaggregated Memory System

Challenge 1: How to reduce network round trips?

• Challenge 2: How to enable one-side insertions?

Challenge 3: How to support efficient batched operations?

Reduce Network Round Trips Challenge

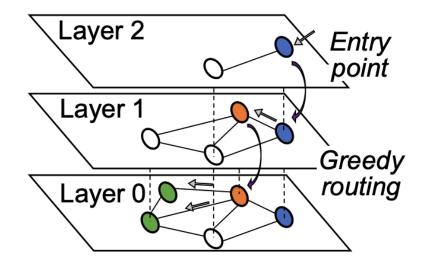
greedy algorithm

node represents vector

unpredictable traversal path

fetch each step

excessive round-trips

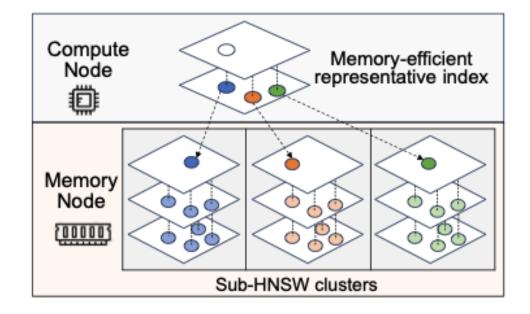


Reduce Network Round Trips Challenge

Our approach: Representative index caching

a lightweight meta-HNSW

- Minimizes network transfer of irrelevant vectors
- Reduces latency and bandwidth usage
- Preserves high recall



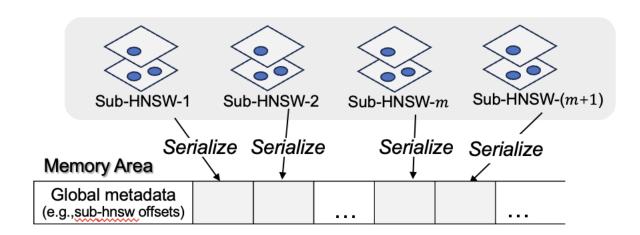
One-side Insertions Challenge

compactly serialized

new vector insertion

scatters vectors

High latency from fragmented memory access and multiple RDMA round-trips.



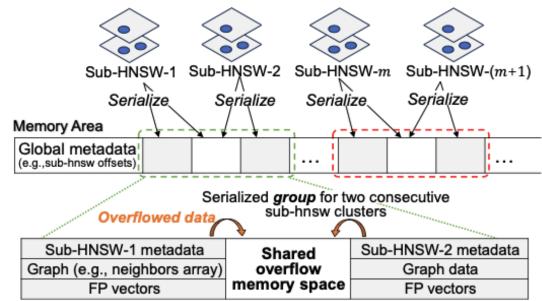
One-side Insertions Challenge

• Our approach: RDMA-friendly graph index storage layout in remote memory.

Internalgap

Shared overflow memory space

- Enables single-round RDMA reads for query
- Avoid fragmented memory access
- Preserves high throughput under insertions
- Balances insertions between two sub-HNSW



Efficient Batched Operations Challenge

search top-k candidates across b closest sub-HNSWs

redundant transfers and high bandwidth usage.

can only cache limited sub-HNSWs

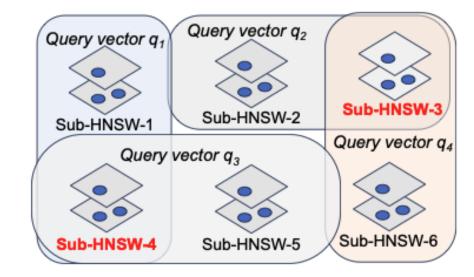
Efficient Batched Operations Challenge

Our approach: Query-aware batched data loading

required sub-HNSW only once per batch

doorbell batching

- Minimizes redundant data transfers
- Reduces network round-trips with batching
- Preserves cache efficiency

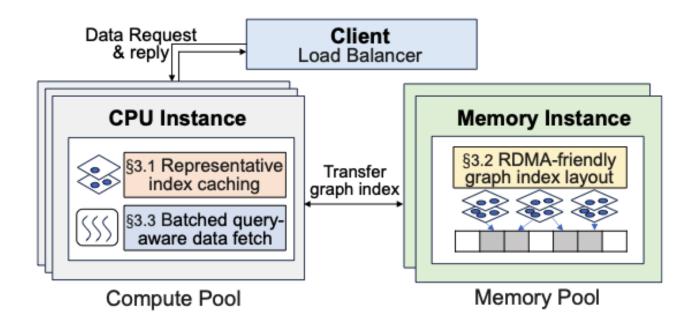


Overall design

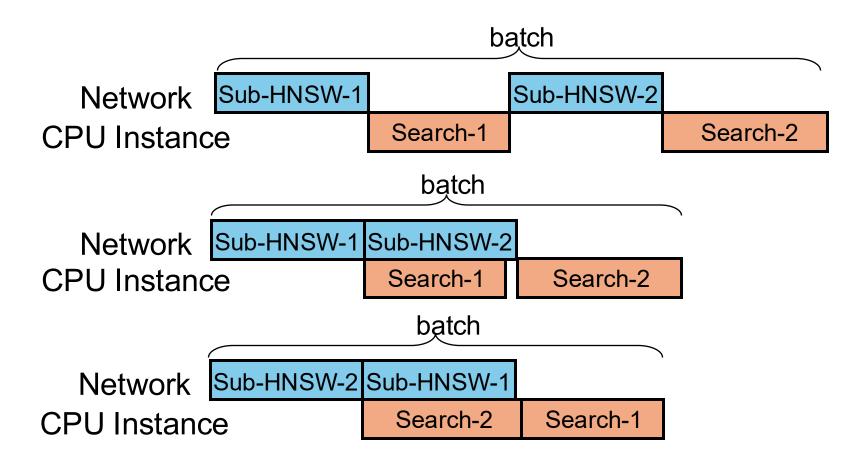
Representative index caching

RDMA-friendly graph index storage layout in remote memory.

Query-aware batched data loading



Pipeline Parallelism

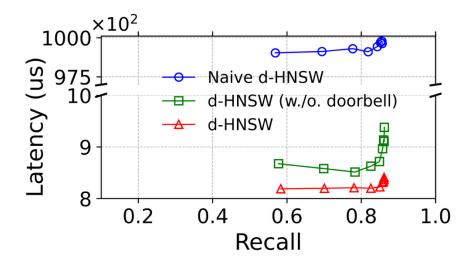


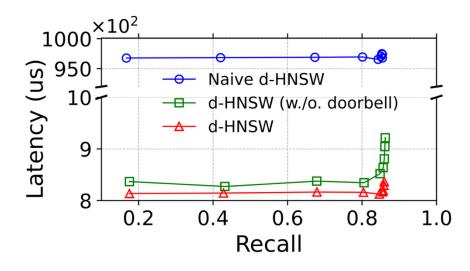
Implementation and Evaluation Step

- Implementation
 - >~12K LoC C++
- Testbed
 - ➤ Dell PowerEdge R650: 2×36-core Intel Xeon Platinum CPUs, 250GB RAM, 1.6TB NVMe SSD, **Mellanox ConnectX-6 100Gb NIC**
 - >3 as computing
 - ▶1 as memory node
- Datasets
 - ➤ SIFT1M
 - ➤GIST1M

Evaluation

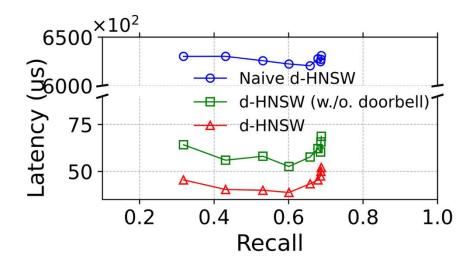
 d-HNSW reduces latency by up to 117× and 1.12× compared to naive d-HNSW and d-HNSW without doorbell

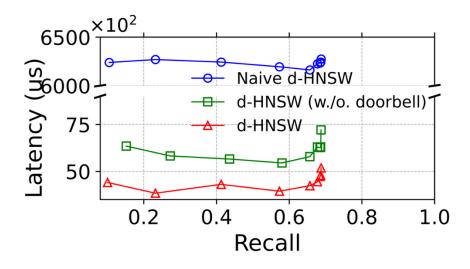




Evaluation

• d-HNSW achieves up to 121× and 1.30× lower latency compared to naive d-HNSW and d-HNSW without doorbell.





Evaluation

 d-HNSW outperforms Naïve d-HNSW and d-HNSW without doorbell in both network and sub-HNSW search latency.

Scheme	Network	Sub-HNSW	Meta-HNSW
Naive d-HNSW	90271.2μs	6564.5μs	13.52μs
d-HNSW (w./o. doorbell)	607.5μs	287.0μs	9.97μs
d-HNSW	527.6μs	269.2μs	9.75μs

Table 1: Latency breakdown for SIFT1M@1 with ef-Search as 48.

Scheme	Network	Sub-HNSW	Meta-HNSW
Naive d-HNSW	422.9ms	35.3ms	$61.1 \mu s$
d-HNSW (w./o. doorbell)	2.9ms	1.27ms	52.6μs
d-HNSW	<u>1.3ms</u>	1.48ms	$46.9\mu s$

Table 2: Latency breakdown for GIST1M@1 with efSearch as 48.

Conclusion

- We present d-HNSW: the first RDMA-based vector similarity search engine for disaggregated memory system.
- d-HNSW enhances vector request throughput and minimizes data transfer overhead by implementing an RDMA-friendly data layout for memory nodes.
- d-HNSW optimizes batched vector queries by eliminating redundant vector transfers for batched vector queries.

Thank you!