Efficient Vector Search on Disaggregated
Memory with d-HNSW

Yi Liu*, Fei Fang*, Chen Qian
University of California Santa Cruz

WHotStorage engrist

2025

The 17th ACM Workshop on July 10-11
Hot Topics in Storage and File Systems Boston, MA

Vector DataBases

|mage
documents é “\-: 0.1 06 0.9 76 98
J 3 46 | 23 | 86 45
Vo Embedding
Model Vector Vector Database
Embeddings

Audio J\ J~

Unstructured/
Structured
Data

Vector Query

. ® .o °
Given a query vector ° ®
° o ® °
° o
L X ®
. o
Return Top-k Nearest o ¢
vectors

Top-1(k=1) Nearest Vector

Approximate Vector Query

Graph Index

Layer=2

Inverted Index

N

7
ZZ"&
1\
|
|
I
|

Decreasing characteristic radius

<<

NN

Hierarchical Navigable Small World
(HNSW)

similarity search

Layer 2 O/. Entry
\ p\omt

trade off: latency vs Layer 1 5 V\EK
accurac \
Y —| _ Greedy

err OYuting

Robustness and high
performance

Disaggregated Memory Systems (DMS)

High resource

|
CPU Instance Memory Instance
Flexible hardware e o & a o [D [l
scalability = O O O _ Fast
S & O& O& || etwonk m m m
oo O 0

Efficient data sharing Compute Pool Memory Pool

RDMA-based Disaggregated Memory System

file system

40-400 Gbps
Remote CPU

bypassing

key-value stores

CPU Instance Memory Instance

Ed B B
B B B

transactional
databases

oo 0b
o0
oo 0b
o0

Compute Pool Memory Pool

vector databases

Vector Database on Disaggregated Memory
System

* Challenge 1: How to reduce network round trips?
* Challenge 2: How to enable one-side insertions?

* Challenge 3: How to support efficient batched operations?

Reduce Network Round Trips Challenge

greedy algorithm

Layer 2

node represents \ 0/. 3\53%

vector

excessive Layer 1 i V\EK
unpredictable round-trips \ : : Greedy
traversal path Layer 0,@ =@ |\ "outing
=

fetch each step

Reduce Network Round Trips Challenge

* Our approach: Representative index caching

0 Memory-efficient
w representative index

a lightweight meta-HNSW

Minimizes network transfer of irrelevant vectors
Reduces latency and bandwidth usage

Preserves high recall

Compute
Node

2

Memory
MNode

LLLLLE

Sub-HNSW clusters

One-side Insertions Challenge

compactly serialized High latency from fragmented memory
access and multiple RDMA round-trips.

new vector insertion

Sub-HNSW-1 Sub-HNSW-2 Sub-HNSW-m Sub-HNSW-(m+1)

[/
Serialize Serialize Serialize Serialize
Memory Area \ ! | N

scatters vectors Global metadata

(e.g.,sub-hnsw offsets)

One-side Insertions Challenge

* OQur approach: RDMA-friendly graph index storage layout in remote
memory.

Shared overflow é; @ g; @
Internal gap memory space Sub-HNSW-1. Sub- Hrlsw 2 Sub—HNP\SW m. Sub-HNSW-(m+1)
Senai‘ lize Serialjze Serialize
Memory Area \jk‘__j__ S - _XE_Z_____

{ 1
« Enables single-round RDMA reads for query Eg’ﬁ'ﬂﬁﬂﬂﬁﬁﬂﬁ ' e e
* Avoid fragmented memory access - Serialized group for two consecutive
L “Overflowed darh sub- hnsw’cflgitars —
* Preserves high throughput under insertions Sub-HNSW-1 motadata Shared | Sub-HNSW-2 metadata
. . Graph (e.g., neighbors array) overflow Graph data
 Balances insertions between two sub-HNSW FP vectors memory space FP vectors

Efficient Batched Operations Challenge

search top-k
candidates across b
closest sub-HNSWs

redundant transfers and
high bandwidth usage.

can only cache
limited sub-HNSWs o

Efficient Batched Operations Challenge

* OQur approach: Query-aware batched data loading

required sub-
HNSW only once bdac;?::::u
per batch g

Minimizes redundant data transfers
Reduces network round-trips with batching

Preserves cache efficiency

=~
Sub-HNSW-3/
Sub-HNSW-1 Sub-HNSW-2
.| Query vector
Query vector g, L 9
Sub-HNSW-4 Sub-HNSW-5 ¢ Sub-HNSW-6

Overall design

Representative index caching
Data Request
& reply

Client
Load Balancer
CPU Instance
RDMA-friendly gra ph index &;@3_1 Representative| | | Transfer
storage layout in remote index caching || |graph index
§3.3 Batched query-
memaory. (3(3() aware data fqatghw

Compute Pool

Query-aware batched data

loading

Memory Instance

§3.2 RDMA-friend
graph index layo

SIS

|
HEEENE

Memory Pool

Pipeline Parallelism

Network

CPU Instance

Network

CPU Instance

Network

CPU Instance

bgt\ch
p
Sub-HNSW-1 Sub-HNSW-2
Search-1 Search-2
bjalch
-
Sub-HNSW-1|Sub-HNSW-2
Search-1 Search-2
batch
- B
Sub-HNSW-2|Sub-HNSW-1
Search-2 Search-1

Implementation and Evaluation Step

* Implementation
»~12K LoC C++

e Testbed

» Dell PowerEdge R650: 2x36-core Intel Xeon Platinum CPUs, 250GB RAM,
1.6TB NVMe SSD, Mellanox ConnectX-6 100Gb NIC

»3 as computing
»1 as memory node

e Datasets
>SIFT1M
> GIST1M

Evaluation

e d-HNSW reduces latency byupto117x and 1.12x compared to
naive d-HNSW and d-HNSW without doorbell

X102 . x102

1000 ; : 1000 n 1 .
- o—o—0® - | o o o——o-@

B 97541 —o— Naive d-HNSW 1 4 950“ —o— Naive d-HNSW i
— 107 —&— d-HNSW (w./o. doorbell) T — 10T —&— d-HNSW (w./o. doorbell) T
a —A— d-HNSW L>f —A— d-HNSW

2 ’ E\E\E-j g . E\Ek—/a—ig

Q Q
-+ -+
S gl | s——a—nsh S gl A 5 ——

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Recall Recall

Evaluation

* d-HNSW achieves up to 121x and 1.30x lower latency compared
to naive d-HNSW and d-HNSW without doorbell.

2 y,
6500732 ' ' - 6500395 . . 1

%6000+ —e— Naive d-HNSW 1 65000+ —o— Naive d-HNSW L
o T —&— d-HNSW (w./o. doorbell) T ~ T —&— d-HNSW (w./o. doorbell)T
5’ 75 - —A— d-HNSW 5‘ 75 1 —A—d-HNSW
< -
g 207 A\A_A\A/Aﬁ c 0 A\A/&\ﬂ/ﬁﬁ
1 | | . © | . .

02 04 06 08 1.0 02 04 06 08 1.0
Recall Recall

Evaluation

 d-HNSW outperforms Naive d-HNSW and d-HNSW without
doorbell in both network and sub-HNSW search latency.

Scheme Network Sub-HNSW Meta-HNSW
Naive d-HNSW 90271.2us 6564.5us 13.52ps
d-HNSW (w./o. doorbell) 607.5us 287.0us 9.97 us
d-HNSW 527.6us 269.2us 9.75us
Table 1: Latency breakdown for SIFTIM@1 with ef-
Search as 48.
Scheme Network Sub-HNSW Meta-HNSW
Naive d-HNSW 4229ms 35.3ms 61.1us
d-HNSW (w./o. doorbell) 2.9ms 1.27ms 52.64s
d-HNSW 1.3ms 1.48ms 46.9us

Table 2: Latency breakdown for GISTIM@1 with
efSearch as 48.

Conclusion

* We present d-HNSW: the first RDMA-based vector similarity
search engine for disaggregated memory system.

* d-HNSW enhances vector request throughput and minimizes data
transfer overhead by implementing an RDMA-friendly data layout
for memory nodes.

 d-HNSW optimizes batched vector queries by eliminating
redundant vector transfers for batched vector queries.

Thank you!

	Slide 1
	Slide 2: Vector DataBases
	Slide 3: Vector Query
	Slide 4: Approximate Vector Query
	Slide 5: Hierarchical Navigable Small World (HNSW)
	Slide 6: Disaggregated Memory Systems (DMS)
	Slide 7: RDMA-based Disaggregated Memory System
	Slide 8: Vector Database on Disaggregated Memory System
	Slide 9: Reduce Network Round Trips Challenge
	Slide 10: Reduce Network Round Trips Challenge
	Slide 11: One-side Insertions Challenge
	Slide 12: One-side Insertions Challenge
	Slide 13: Efficient Batched Operations Challenge
	Slide 14: Efficient Batched Operations Challenge
	Slide 15: Overall design
	Slide 16: Pipeline Parallelism
	Slide 17: Implementation and Evaluation Step
	Slide 18: Evaluation
	Slide 19: Evaluation
	Slide 20: Evaluation
	Slide 21: Conclusion
	Slide 22: Thank you!

