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Vector DataBases
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Vector Query
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Approximate Vector Query
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Hierarchical Navigable Small World
(HNSW)
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Disaggregated Memory Systems (DMS)
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RDMA-based Disaggregated Memory System
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Vector Database on Disaggregated Memory
System

* Challenge 1: How to reduce network round trips?
* Challenge 2: How to enable one-side insertions?

* Challenge 3: How to support efficient batched operations?



Reduce Network Round Trips Challenge
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Reduce Network Round Trips Challenge

* Our approach: Representative index caching

0 Memory-efficient
w representative index

a lightweight meta-HNSW

Minimizes network transfer of irrelevant vectors
Reduces latency and bandwidth usage

Preserves high recall
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One-side Insertions Challenge

compactly serialized High latency from fragmented memory
access and multiple RDMA round-trips.

new vector insertion
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One-side Insertions Challenge

* OQur approach: RDMA-friendly graph index storage layout in remote
memory.
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Efficient Batched Operations Challenge
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Efficient Batched Operations Challenge

* OQur approach: Query-aware batched data loading

required sub-
HNSW only once bdac;?::::u
per batch g

Minimizes redundant data transfers
Reduces network round-trips with batching

Preserves cache efficiency
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Overall design
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Pipeline Parallelism
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Implementation and Evaluation Step

* Implementation
»~12K LoC C++

e Testbed

» Dell PowerEdge R650: 2x36-core Intel Xeon Platinum CPUs, 250GB RAM,
1.6TB NVMe SSD, Mellanox ConnectX-6 100Gb NIC

»3 as computing
»1 as memory node

e Datasets
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Evaluation

e d-HNSW reduces latency byupto117x and 1.12x compared to
naive d-HNSW and d-HNSW without doorbell
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Evaluation

* d-HNSW achieves up to 121x and 1.30x lower latency compared
to naive d-HNSW and d-HNSW without doorbell.
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Evaluation

 d-HNSW outperforms Naive d-HNSW and d-HNSW without
doorbell in both network and sub-HNSW search latency.

Scheme Network Sub-HNSW Meta-HNSW
Naive d-HNSW 90271.2us  6564.5us 13.52ps
d-HNSW (w./o. doorbell) 607.5us  287.0us 9.97 us
d-HNSW 527.6us  269.2us 9.75us
Table 1: Latency breakdown for SIFTIM@1 with ef-
Search as 48.
Scheme Network Sub-HNSW Meta-HNSW
Naive d-HNSW 4229ms  35.3ms 61.1us
d-HNSW (w./o. doorbell) 2.9ms 1.27ms 52.64s
d-HNSW 1.3ms 1.48ms 46.9us

Table 2: Latency breakdown for GISTIM@1 with
efSearch as 48.



Conclusion

* We present d-HNSW: the first RDMA-based vector similarity
search engine for disaggregated memory system.

* d-HNSW enhances vector request throughput and minimizes data
transfer overhead by implementing an RDMA-friendly data layout
for memory nodes.

 d-HNSW optimizes batched vector queries by eliminating
redundant vector transfers for batched vector queries.
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