
Efficient Vector Search on Disaggregated
Memory with d-HNSW

Yi Liu*, Fei Fang*, Chen Qian

University of California Santa Cruz

Vector DataBases

Vector Query

Given a query vector

Return Top-k Nearest
vectors

Approximate Vector Query

Graph Index Inverted Index

Hierarchical Navigable Small World
(HNSW)

similarity search

trade off: latency vs
accuracy

Robustness and high
performance

Disaggregated Memory Systems (DMS)

High resource
utilization

Flexible hardware
scalability

Efficient data sharing

CPU Instance Memory Instance

Compute Pool Memory Pool

Fast

network

RDMA-based Disaggregated Memory System

CPU Instance Memory Instance

Compute Pool Memory Pool

Fast

network

transactional
databases

key-value stores

file system

vector databases

RDMA

40-400 Gbps
Remote CPU

bypassing

…

Vector Database on Disaggregated Memory
System

• Challenge 1: How to reduce network round trips?

• Challenge 2: How to enable one-side insertions?

• Challenge 3: How to support efficient batched operations?

Reduce Network Round Trips Challenge

greedy algorithm

excessive
round-trips

fetch each step

node represents
vector

unpredictable
traversal path

Reduce Network Round Trips Challenge

• Our approach: Representative index caching

a lightweight meta-HNSW

• Minimizes network transfer of irrelevant vectors

• Reduces latency and bandwidth usage

• Preserves high recall

One-side Insertions Challenge

compactly serialized

new vector insertion

scatters vectors

High latency from fragmented memory
access and multiple RDMA round-trips.

One-side Insertions Challenge

• Our approach: RDMA-friendly graph index storage layout in remote
memory.

Internal gap

• Enables single-round RDMA reads for query

• Avoid fragmented memory access

• Preserves high throughput under insertions

• Balances insertions between two sub-HNSW

Shared overflow
memory space

Efficient Batched Operations Challenge

search top-k
candidates across b
closest sub-HNSWs

can only cache
limited sub-HNSWs

 redundant transfers and
high bandwidth usage.

Efficient Batched Operations Challenge

• Our approach: Query-aware batched data loading
Load each

required sub-
HNSW only once

per batch

• Minimizes redundant data transfers

• Reduces network round-trips with batching

• Preserves cache efficiency

doorbell
batching

Overall design

Representative index caching

RDMA-friendly graph index
storage layout in remote

memory.

Query-aware batched data
loading

Network

CPU Instance

Sub-HNSW-1

Search-1

Network
CPU Instance

Sub-HNSW-2

Search-2

Sub-HNSW-1

Search-1

Sub-HNSW-2

Search-2

Network

CPU Instance

Sub-HNSW-2

Search-2

Sub-HNSW-1

Search-1

batch

batch

batch

Pipeline Parallelism

Implementation and Evaluation Step

• Implementation
➢~12K LoC C++

• Testbed
➢ Dell PowerEdge R650: 2×36-core Intel Xeon Platinum CPUs, 250GB RAM,

1.6TB NVMe SSD, Mellanox ConnectX-6 100Gb NIC
➢3 as computing
➢1 as memory node

• Datasets
➢SIFT1M
➢GIST1M

Evaluation

• d-HNSW reduces latency by up to 117× and 1.12× compared to
naive d-HNSW and d-HNSW without doorbell

Evaluation

• d-HNSW achieves up to 121× and 1.30× lower latency compared
to naive d-HNSW and d-HNSW without doorbell.

Evaluation

• d-HNSW outperforms Naïve d-HNSW and d-HNSW without
doorbell in both network and sub-HNSW search latency.

Conclusion

• We present d-HNSW: the first RDMA-based vector similarity
search engine for disaggregated memory system.

• d-HNSW enhances vector request throughput and minimizes data
transfer overhead by implementing an RDMA-friendly data layout
for memory nodes.

• d-HNSW optimizes batched vector queries by eliminating
redundant vector transfers for batched vector queries.

Thank you!

	Slide 1
	Slide 2: Vector DataBases
	Slide 3: Vector Query
	Slide 4: Approximate Vector Query
	Slide 5: Hierarchical Navigable Small World (HNSW)
	Slide 6: Disaggregated Memory Systems (DMS)
	Slide 7: RDMA-based Disaggregated Memory System
	Slide 8: Vector Database on Disaggregated Memory System
	Slide 9: Reduce Network Round Trips Challenge
	Slide 10: Reduce Network Round Trips Challenge
	Slide 11: One-side Insertions Challenge
	Slide 12: One-side Insertions Challenge
	Slide 13: Efficient Batched Operations Challenge
	Slide 14: Efficient Batched Operations Challenge
	Slide 15: Overall design
	Slide 16: Pipeline Parallelism
	Slide 17: Implementation and Evaluation Step
	Slide 18: Evaluation
	Slide 19: Evaluation
	Slide 20: Evaluation
	Slide 21: Conclusion
	Slide 22: Thank you!

